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Extended Abstract 
The vortex induced limit-cycle rotary oscillation of wings is often referred to as 

‘wing rock’ [1]. Early studies of wing rock focused on slender delta wings [2,3]. 

Recent experimental investigations on relatively higher aspect ratio (AR = 2 and 

4) rectangular flat plate wings suggested that, even at pre-stall incidences, self-

excited roll oscillations occur [4,5]. Previous studies of suppressing the slender 

wing rock have been conducted by applying both passive [6] and active [7-10] 

flow control techniques. It has been found that the active techniques,  which can 

often be regarded as steady or periodic addition of momentum that affects the 

boundary layers and shear layers [11], tend to be more effective [1]. This paper 

reviews our recent works on the suppression of the self-induced roll oscillations of 

LAR rectangular wings using active flow control techniques. Both acoustic excita-

tion and synthetic jet blowing were used to attenuate the self-excited roll oscilla-

tions. The experiments were conducted in a closed-loop wind tunnel located at the 

Department of Mechanical Engineering of the University of Bath. Three rectangu-

lar wings, of flat plate, NACA0012 and SD7003-085-88 profiles, with an aspect 

ratio of AR = 2 were tested. Quantitative flow measurements were undertaken us-

ing two different PIV systems, a TSI 2D-PIV system for time-averaged and phase-

averaged velocity measurements and a TSI high frame rate PIV system for the 

spectral features of the shear layer separated from the leading edge.  It was found 

that roll oscillations can be completely suppressed and the onset of the roll oscilla-

tions can be delayed by active flow control approaches (Figs. 1 and 2). PIV meas-

urements indicated that the excitations could restore a symmetric vortex flow over 

the free-to-roll wings thus stabilizing the self-excited roll oscillations. 
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Fig. 1 Variation of roll angle with angle of attack for the flat plate wing with AR = 

2 without and with acoustic excitation at St = 1.5. 

 
Fig. 2 (a) RMS values of free-to-roll flat plate wing roll angle as a function of an-

gle of attack without and with synthetic jet excitation; (b) Reduction of RMS val-

ues of the roll angle as a function of angle of attack. 
 


